| File: | tools/hashtab.c |
| Warning: | line 270, column 35 Result of 'calloc' is converted to a pointer of type 'void *', which is incompatible with sizeof operand type 'void **' |
| 1 | /* An expandable hash tables datatype. |
| 2 | Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc. |
| 3 | Contributed by Vladimir Makarov (vmakarov@cygnus.com). |
| 4 | |
| 5 | This file is part of the libiberty library. |
| 6 | Libiberty is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Library General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2 of the License, or (at your option) any later version. |
| 10 | |
| 11 | Libiberty is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Library General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Library General Public |
| 17 | License along with libiberty; see the file COPYING.LIB. If |
| 18 | not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 19 | Boston, MA 02111-1307, USA. */ |
| 20 | |
| 21 | /* This package implements basic hash table functionality. It is possible |
| 22 | to search for an entry, create an entry and destroy an entry. |
| 23 | |
| 24 | Elements in the table are generic pointers. |
| 25 | |
| 26 | The size of the table is not fixed; if the occupancy of the table |
| 27 | grows too high the hash table will be expanded. |
| 28 | |
| 29 | The abstract data implementation is based on generalized Algorithm D |
| 30 | from Knuth's book "The art of computer programming". Hash table is |
| 31 | expanded by creation of new hash table and transferring elements from |
| 32 | the old table to the new table. */ |
| 33 | |
| 34 | #include <sys/types.h> |
| 35 | #include <stdlib.h> |
| 36 | #include <string.h> |
| 37 | #include <stdio.h> |
| 38 | #include "tools/hashtab.h" |
| 39 | |
| 40 | /* This macro defines reserved value for empty table entry. */ |
| 41 | |
| 42 | #define EMPTY_ENTRY((void *) 0) ((void *) 0) |
| 43 | |
| 44 | /* This macro defines reserved value for table entry which contained |
| 45 | a deleted element. */ |
| 46 | |
| 47 | #define DELETED_ENTRY((void *) 1) ((void *) 1) |
| 48 | |
| 49 | static unsigned long higher_prime_number (unsigned long); |
| 50 | static hashval_t hash_pointer (const void *); |
| 51 | static int eq_pointer (const void *, const void *); |
| 52 | static int htab_expand (htab_t); |
| 53 | static void **find_empty_slot_for_expand (htab_t, hashval_t); |
| 54 | |
| 55 | /* At some point, we could make these be NULL, and modify the |
| 56 | hash-table routines to handle NULL specially; that would avoid |
| 57 | function-call overhead for the common case of hashing pointers. */ |
| 58 | htab_hash htab_hash_pointer = hash_pointer; |
| 59 | htab_eq htab_eq_pointer = eq_pointer; |
| 60 | |
| 61 | /* The following function returns a nearest prime number which is |
| 62 | greater than N, and near a power of two. */ |
| 63 | |
| 64 | static unsigned long |
| 65 | higher_prime_number (n) |
| 66 | unsigned long n; |
| 67 | { |
| 68 | /* These are primes that are near, but slightly smaller than, a |
| 69 | power of two. */ |
| 70 | static unsigned long primes[] = { |
| 71 | (unsigned long) 2, |
| 72 | (unsigned long) 7, |
| 73 | (unsigned long) 13, |
| 74 | (unsigned long) 31, |
| 75 | (unsigned long) 61, |
| 76 | (unsigned long) 127, |
| 77 | (unsigned long) 251, |
| 78 | (unsigned long) 509, |
| 79 | (unsigned long) 1021, |
| 80 | (unsigned long) 2039, |
| 81 | (unsigned long) 4093, |
| 82 | (unsigned long) 8191, |
| 83 | (unsigned long) 16381, |
| 84 | (unsigned long) 32749, |
| 85 | (unsigned long) 65521, |
| 86 | (unsigned long) 131071, |
| 87 | (unsigned long) 262139, |
| 88 | (unsigned long) 524287, |
| 89 | (unsigned long) 1048573, |
| 90 | (unsigned long) 2097143, |
| 91 | (unsigned long) 4194301, |
| 92 | (unsigned long) 8388593, |
| 93 | (unsigned long) 16777213, |
| 94 | (unsigned long) 33554393, |
| 95 | (unsigned long) 67108859, |
| 96 | (unsigned long) 134217689, |
| 97 | (unsigned long) 268435399, |
| 98 | (unsigned long) 536870909, |
| 99 | (unsigned long) 1073741789, |
| 100 | (unsigned long) 2147483647, |
| 101 | /* 4294967291L */ |
| 102 | ((unsigned long) 2147483647) + ((unsigned long) 2147483644), |
| 103 | }; |
| 104 | |
| 105 | unsigned long* low = &primes[0]; |
| 106 | unsigned long* high = &primes[sizeof(primes) / sizeof(primes[0])]; |
| 107 | |
| 108 | while (low != high) |
| 109 | { |
| 110 | unsigned long* mid = low + (high - low) / 2; |
| 111 | if (n > *mid) |
| 112 | low = mid + 1; |
| 113 | else |
| 114 | high = mid; |
| 115 | } |
| 116 | |
| 117 | /* If we've run out of primes, abort. */ |
| 118 | if (n > *low) |
| 119 | { |
| 120 | fprintf (stderrstderr, "Cannot find prime bigger than %lu\n", n); |
| 121 | abort (); |
| 122 | } |
| 123 | |
| 124 | return *low; |
| 125 | } |
| 126 | |
| 127 | /* Returns a hash code for P. */ |
| 128 | |
| 129 | static hashval_t |
| 130 | hash_pointer (p) |
| 131 | const void * p; |
| 132 | { |
| 133 | return (hashval_t) ((long)p >> 3); |
| 134 | } |
| 135 | |
| 136 | /* Returns non-zero if P1 and P2 are equal. */ |
| 137 | |
| 138 | static int |
| 139 | eq_pointer (p1, p2) |
| 140 | const void * p1; |
| 141 | const void * p2; |
| 142 | { |
| 143 | return p1 == p2; |
| 144 | } |
| 145 | |
| 146 | /* This function creates table with length slightly longer than given |
| 147 | source length. The created hash table is initiated as empty (all the |
| 148 | hash table entries are EMPTY_ENTRY). The function returns the created |
| 149 | hash table. Memory allocation may fail; it may return NULL. */ |
| 150 | |
| 151 | htab_t |
| 152 | htab_try_create (size, hash_f, eq_f, del_f) |
| 153 | size_t size; |
| 154 | htab_hash hash_f; |
| 155 | htab_eq eq_f; |
| 156 | htab_del del_f; |
| 157 | { |
| 158 | htab_t result; |
| 159 | |
| 160 | size = higher_prime_number (size); |
| 161 | result = (htab_t) calloc (1, sizeof (struct htab)); |
| 162 | if (result == NULL((void*)0)) |
| 163 | return NULL((void*)0); |
| 164 | |
| 165 | result->entries = (void **) calloc (size, sizeof (void *)); |
| 166 | if (result->entries == NULL((void*)0)) |
| 167 | { |
| 168 | free (result); |
| 169 | return NULL((void*)0); |
| 170 | } |
| 171 | |
| 172 | result->size = size; |
| 173 | result->hash_f = hash_f; |
| 174 | result->eq_f = eq_f; |
| 175 | result->del_f = del_f; |
| 176 | result->return_allocation_failure = 1; |
| 177 | return result; |
| 178 | } |
| 179 | |
| 180 | /* This function frees all memory allocated for given hash table. |
| 181 | Naturally the hash table must already exist. */ |
| 182 | |
| 183 | void |
| 184 | htab_delete (htab) |
| 185 | htab_t htab; |
| 186 | { |
| 187 | int i; |
| 188 | |
| 189 | if (htab->del_f) |
| 190 | for (i = htab->size - 1; i >= 0; i--) |
| 191 | if (htab->entries[i] != EMPTY_ENTRY((void *) 0) |
| 192 | && htab->entries[i] != DELETED_ENTRY((void *) 1)) |
| 193 | (*htab->del_f) (htab->entries[i]); |
| 194 | |
| 195 | free (htab->entries); |
| 196 | free (htab); |
| 197 | } |
| 198 | |
| 199 | /* This function clears all entries in the given hash table. */ |
| 200 | |
| 201 | void |
| 202 | htab_empty (htab) |
| 203 | htab_t htab; |
| 204 | { |
| 205 | int i; |
| 206 | |
| 207 | if (htab->del_f) |
| 208 | for (i = htab->size - 1; i >= 0; i--) |
| 209 | if (htab->entries[i] != EMPTY_ENTRY((void *) 0) |
| 210 | && htab->entries[i] != DELETED_ENTRY((void *) 1)) |
| 211 | (*htab->del_f) (htab->entries[i]); |
| 212 | |
| 213 | memset (htab->entries, 0, htab->size * sizeof (void *)); |
| 214 | } |
| 215 | |
| 216 | /* Similar to htab_find_slot, but without several unwanted side effects: |
| 217 | - Does not call htab->eq_f when it finds an existing entry. |
| 218 | - Does not change the count of elements/searches/collisions in the |
| 219 | hash table. |
| 220 | This function also assumes there are no deleted entries in the table. |
| 221 | HASH is the hash value for the element to be inserted. */ |
| 222 | |
| 223 | static void ** |
| 224 | find_empty_slot_for_expand (htab, hash) |
| 225 | htab_t htab; |
| 226 | hashval_t hash; |
| 227 | { |
| 228 | size_t size = htab->size; |
| 229 | hashval_t hash2 = 1 + hash % (size - 2); |
| 230 | unsigned int index = hash % size; |
| 231 | |
| 232 | for (;;) |
| 233 | { |
| 234 | void **slot = htab->entries + index; |
| 235 | |
| 236 | if (*slot == EMPTY_ENTRY((void *) 0)) |
| 237 | return slot; |
| 238 | else if (*slot == DELETED_ENTRY((void *) 1)) |
| 239 | abort (); |
| 240 | |
| 241 | index += hash2; |
| 242 | if (index >= size) |
| 243 | index -= size; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | /* The following function changes size of memory allocated for the |
| 248 | entries and repeatedly inserts the table elements. The occupancy |
| 249 | of the table after the call will be about 50%. Naturally the hash |
| 250 | table must already exist. Remember also that the place of the |
| 251 | table entries is changed. If memory allocation failures are allowed, |
| 252 | this function will return zero, indicating that the table could not be |
| 253 | expanded. If all goes well, it will return a non-zero value. */ |
| 254 | |
| 255 | static int |
| 256 | htab_expand (htab) |
| 257 | htab_t htab; |
| 258 | { |
| 259 | void **oentries; |
| 260 | void **olimit; |
| 261 | void **p; |
| 262 | |
| 263 | oentries = htab->entries; |
| 264 | olimit = oentries + htab->size; |
| 265 | |
| 266 | htab->size = higher_prime_number (htab->size * 2); |
| 267 | |
| 268 | if (htab->return_allocation_failure) |
| 269 | { |
| 270 | void **nentries = (void **) calloc (htab->size, sizeof (void **)); |
Result of 'calloc' is converted to a pointer of type 'void *', which is incompatible with sizeof operand type 'void **' | |
| 271 | if (nentries == NULL((void*)0)) |
| 272 | return 0; |
| 273 | htab->entries = nentries; |
| 274 | } |
| 275 | |
| 276 | htab->n_elements -= htab->n_deleted; |
| 277 | htab->n_deleted = 0; |
| 278 | |
| 279 | p = oentries; |
| 280 | do |
| 281 | { |
| 282 | void * x = *p; |
| 283 | |
| 284 | if (x != EMPTY_ENTRY((void *) 0) && x != DELETED_ENTRY((void *) 1)) |
| 285 | { |
| 286 | void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); |
| 287 | |
| 288 | *q = x; |
| 289 | } |
| 290 | |
| 291 | p++; |
| 292 | } |
| 293 | while (p < olimit); |
| 294 | |
| 295 | free (oentries); |
| 296 | return 1; |
| 297 | } |
| 298 | |
| 299 | /* This function searches for a hash table entry equal to the given |
| 300 | element. It cannot be used to insert or delete an element. */ |
| 301 | |
| 302 | void * |
| 303 | htab_find_with_hash (htab, element, hash) |
| 304 | htab_t htab; |
| 305 | const void * element; |
| 306 | hashval_t hash; |
| 307 | { |
| 308 | unsigned int index; |
| 309 | hashval_t hash2; |
| 310 | size_t size; |
| 311 | void * entry; |
| 312 | |
| 313 | htab->searches++; |
| 314 | size = htab->size; |
| 315 | index = hash % size; |
| 316 | |
| 317 | entry = htab->entries[index]; |
| 318 | if (entry == EMPTY_ENTRY((void *) 0) |
| 319 | || (entry != DELETED_ENTRY((void *) 1) && (*htab->eq_f) (entry, element))) |
| 320 | return entry; |
| 321 | |
| 322 | hash2 = 1 + hash % (size - 2); |
| 323 | |
| 324 | for (;;) |
| 325 | { |
| 326 | htab->collisions++; |
| 327 | index += hash2; |
| 328 | if (index >= size) |
| 329 | index -= size; |
| 330 | |
| 331 | entry = htab->entries[index]; |
| 332 | if (entry == EMPTY_ENTRY((void *) 0) |
| 333 | || (entry != DELETED_ENTRY((void *) 1) && (*htab->eq_f) (entry, element))) |
| 334 | return entry; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /* Like htab_find_slot_with_hash, but compute the hash value from the |
| 339 | element. */ |
| 340 | |
| 341 | void * |
| 342 | htab_find (htab, element) |
| 343 | htab_t htab; |
| 344 | const void * element; |
| 345 | { |
| 346 | return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); |
| 347 | } |
| 348 | |
| 349 | /* This function searches for a hash table slot containing an entry |
| 350 | equal to the given element. To delete an entry, call this with |
| 351 | INSERT = 0, then call htab_clear_slot on the slot returned (possibly |
| 352 | after doing some checks). To insert an entry, call this with |
| 353 | INSERT = 1, then write the value you want into the returned slot. |
| 354 | When inserting an entry, NULL may be returned if memory allocation |
| 355 | fails. */ |
| 356 | |
| 357 | void ** |
| 358 | htab_find_slot_with_hash (htab, element, hash, insert) |
| 359 | htab_t htab; |
| 360 | const void * element; |
| 361 | hashval_t hash; |
| 362 | enum insert_option insert; |
| 363 | { |
| 364 | void **first_deleted_slot; |
| 365 | unsigned int index; |
| 366 | hashval_t hash2; |
| 367 | size_t size; |
| 368 | |
| 369 | if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4 |
| 370 | && htab_expand (htab) == 0) |
| 371 | return NULL((void*)0); |
| 372 | |
| 373 | size = htab->size; |
| 374 | hash2 = 1 + hash % (size - 2); |
| 375 | index = hash % size; |
| 376 | |
| 377 | htab->searches++; |
| 378 | first_deleted_slot = NULL((void*)0); |
| 379 | |
| 380 | for (;;) |
| 381 | { |
| 382 | void * entry = htab->entries[index]; |
| 383 | if (entry == EMPTY_ENTRY((void *) 0)) |
| 384 | { |
| 385 | if (insert == NO_INSERT) |
| 386 | return NULL((void*)0); |
| 387 | |
| 388 | htab->n_elements++; |
| 389 | |
| 390 | if (first_deleted_slot) |
| 391 | { |
| 392 | *first_deleted_slot = EMPTY_ENTRY((void *) 0); |
| 393 | return first_deleted_slot; |
| 394 | } |
| 395 | |
| 396 | return &htab->entries[index]; |
| 397 | } |
| 398 | |
| 399 | if (entry == DELETED_ENTRY((void *) 1)) |
| 400 | { |
| 401 | if (!first_deleted_slot) |
| 402 | first_deleted_slot = &htab->entries[index]; |
| 403 | } |
| 404 | else if ((*htab->eq_f) (entry, element)) |
| 405 | return &htab->entries[index]; |
| 406 | |
| 407 | htab->collisions++; |
| 408 | index += hash2; |
| 409 | if (index >= size) |
| 410 | index -= size; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /* Like htab_find_slot_with_hash, but compute the hash value from the |
| 415 | element. */ |
| 416 | |
| 417 | void ** |
| 418 | htab_find_slot (htab, element, insert) |
| 419 | htab_t htab; |
| 420 | const void * element; |
| 421 | enum insert_option insert; |
| 422 | { |
| 423 | return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), |
| 424 | insert); |
| 425 | } |
| 426 | |
| 427 | /* This function deletes an element with the given value from hash |
| 428 | table. If there is no matching element in the hash table, this |
| 429 | function does nothing. */ |
| 430 | |
| 431 | void |
| 432 | htab_remove_elt (htab, element) |
| 433 | htab_t htab; |
| 434 | void * element; |
| 435 | { |
| 436 | void **slot; |
| 437 | |
| 438 | slot = htab_find_slot (htab, element, NO_INSERT); |
| 439 | if (*slot == EMPTY_ENTRY((void *) 0)) |
| 440 | return; |
| 441 | |
| 442 | if (htab->del_f) |
| 443 | (*htab->del_f) (*slot); |
| 444 | |
| 445 | *slot = DELETED_ENTRY((void *) 1); |
| 446 | htab->n_deleted++; |
| 447 | } |
| 448 | |
| 449 | /* This function clears a specified slot in a hash table. It is |
| 450 | useful when you've already done the lookup and don't want to do it |
| 451 | again. */ |
| 452 | |
| 453 | void |
| 454 | htab_clear_slot (htab, slot) |
| 455 | htab_t htab; |
| 456 | void **slot; |
| 457 | { |
| 458 | if (slot < htab->entries || slot >= htab->entries + htab->size |
| 459 | || *slot == EMPTY_ENTRY((void *) 0) || *slot == DELETED_ENTRY((void *) 1)) |
| 460 | abort (); |
| 461 | |
| 462 | if (htab->del_f) |
| 463 | (*htab->del_f) (*slot); |
| 464 | |
| 465 | *slot = DELETED_ENTRY((void *) 1); |
| 466 | htab->n_deleted++; |
| 467 | } |
| 468 | |
| 469 | /* This function scans over the entire hash table calling |
| 470 | CALLBACK for each live entry. If CALLBACK returns false, |
| 471 | the iteration stops. INFO is passed as CALLBACK's second |
| 472 | argument. */ |
| 473 | |
| 474 | void |
| 475 | htab_traverse (htab, callback, info) |
| 476 | htab_t htab; |
| 477 | htab_trav callback; |
| 478 | void * info; |
| 479 | { |
| 480 | void **slot = htab->entries; |
| 481 | void **limit = slot + htab->size; |
| 482 | |
| 483 | do |
| 484 | { |
| 485 | void * x = *slot; |
| 486 | |
| 487 | if (x != EMPTY_ENTRY((void *) 0) && x != DELETED_ENTRY((void *) 1)) |
| 488 | if (!(*callback) (slot, info)) |
| 489 | break; |
| 490 | } |
| 491 | while (++slot < limit); |
| 492 | } |
| 493 | |
| 494 | /* Return the current size of given hash table. */ |
| 495 | |
| 496 | size_t |
| 497 | htab_size (htab) |
| 498 | htab_t htab; |
| 499 | { |
| 500 | return htab->size; |
| 501 | } |
| 502 | |
| 503 | /* Return the current number of elements in given hash table. */ |
| 504 | |
| 505 | size_t |
| 506 | htab_elements (htab) |
| 507 | htab_t htab; |
| 508 | { |
| 509 | return htab->n_elements - htab->n_deleted; |
| 510 | } |
| 511 | |
| 512 | /* Return the fraction of fixed collisions during all work with given |
| 513 | hash table. */ |
| 514 | |
| 515 | double |
| 516 | htab_collisions (htab) |
| 517 | htab_t htab; |
| 518 | { |
| 519 | if (htab->searches == 0) |
| 520 | return 0.0; |
| 521 | |
| 522 | return (double) htab->collisions / (double) htab->searches; |
| 523 | } |