File: | src/sha2.c |
Warning: | line 438, column 2 Value stored to 'a' is never read |
1 | /* |
2 | * FILE: sha2.c |
3 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
4 | * |
5 | * Copyright (c) 2000-2001, Aaron D. Gifford |
6 | * All rights reserved. |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without |
9 | * modification, are permitted provided that the following conditions |
10 | * are met: |
11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * 2. Redistributions in binary form must reproduce the above copyright |
14 | * notice, this list of conditions and the following disclaimer in the |
15 | * documentation and/or other materials provided with the distribution. |
16 | * 3. Neither the name of the copyright holder nor the names of contributors |
17 | * may be used to endorse or promote products derived from this software |
18 | * without specific prior written permission. |
19 | * |
20 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
30 | * SUCH DAMAGE. |
31 | * |
32 | * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
33 | */ |
34 | |
35 | #include <sys/types.h> |
36 | #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ |
37 | /* #include <assert.h> */ /* assert() */ |
38 | #include <stdio.h> |
39 | #include <sys/uio.h> |
40 | #include <unistd.h> |
41 | #include <inttypes.h> |
42 | |
43 | #include "sha2.h" |
44 | |
45 | |
46 | /* |
47 | * ASSERT NOTE: |
48 | * Some sanity checking code is included using assert(). On my FreeBSD |
49 | * system, this additional code can be removed by compiling with NDEBUG |
50 | * defined. Check your own systems manpage on assert() to see how to |
51 | * compile WITHOUT the sanity checking code on your system. |
52 | * |
53 | * UNROLLED TRANSFORM LOOP NOTE: |
54 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
55 | * loop version for the hash transform rounds (defined using macros |
56 | * later in this file). Either define on the command line, for example: |
57 | * |
58 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
59 | * |
60 | * or define below: |
61 | * |
62 | * #define SHA2_UNROLL_TRANSFORM |
63 | * |
64 | */ |
65 | |
66 | #define SHA2_UNROLL_TRANSFORM |
67 | |
68 | |
69 | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
70 | /* |
71 | * BYTE_ORDER NOTE: |
72 | * |
73 | * Please make sure that your system defines BYTE_ORDER. If your |
74 | * architecture is little-endian, make sure it also defines |
75 | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
76 | * equivilent. |
77 | * |
78 | * If your system does not define the above, then you can do so by |
79 | * hand like this: |
80 | * |
81 | * #define LITTLE_ENDIAN 1234 |
82 | * #define BIG_ENDIAN 4321 |
83 | * |
84 | * And for little-endian machines, add: |
85 | * |
86 | * #define BYTE_ORDER LITTLE_ENDIAN |
87 | * |
88 | * Or for big-endian machines: |
89 | * |
90 | * #define BYTE_ORDER BIG_ENDIAN |
91 | * |
92 | * The FreeBSD machine this was written on defines BYTE_ORDER |
93 | * appropriately by including <sys/types.h> (which in turn includes |
94 | * <machine/endian.h> where the appropriate definitions are actually |
95 | * made). |
96 | */ |
97 | |
98 | /* |
99 | * Define the following sha2_* types to types of the correct length on |
100 | * the native archtecture. Most BSD systems and Linux define u_intXX_t |
101 | * types. Machines with very recent ANSI C headers, can use the |
102 | * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H |
103 | * during compile or in the sha.h header file. |
104 | * |
105 | * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t |
106 | * will need to define these three typedefs below (and the appropriate |
107 | * ones in sha.h too) by hand according to their system architecture. |
108 | * |
109 | * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t |
110 | * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. |
111 | */ |
112 | typedef uint8_t sha2_byte; /* Exactly 1 byte */ |
113 | typedef uint32_t sha2_word32; /* Exactly 4 bytes */ |
114 | typedef uint64_t sha2_word64; /* Exactly 8 bytes */ |
115 | |
116 | |
117 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
118 | /* NOTE: Most of these are in sha2.h */ |
119 | #define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8) |
120 | #define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16) |
121 | #define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16) |
122 | |
123 | |
124 | /*** ENDIAN REVERSAL MACROS *******************************************/ |
125 | #ifndef WORDS_BIGENDIAN |
126 | #define REVERSE32(w,x){ sha2_word32 tmp = (w); tmp = (tmp >> 16) | (tmp << 16); (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); } { \ |
127 | sha2_word32 tmp = (w); \ |
128 | tmp = (tmp >> 16) | (tmp << 16); \ |
129 | (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ |
130 | } |
131 | #define REVERSE64(w,x){ sha2_word64 tmp = (w); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ( (tmp & 0x00ff00ff00ff00ffULL) << 8); (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL ) << 16); } { \ |
132 | sha2_word64 tmp = (w); \ |
133 | tmp = (tmp >> 32) | (tmp << 32); \ |
134 | tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ |
135 | ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ |
136 | (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ |
137 | ((tmp & 0x0000ffff0000ffffULL) << 16); \ |
138 | } |
139 | #endif /* !WORDS_BIGENDIAN */ |
140 | |
141 | /* |
142 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
143 | * unsigned 128-bit integer (represented using a two-element array of |
144 | * 64-bit words): |
145 | */ |
146 | #define ADDINC128(w,n){ (w)[0] += (sha2_word64)(n); if ((w)[0] < (n)) { (w)[1]++ ; } } { \ |
147 | (w)[0] += (sha2_word64)(n); \ |
148 | if ((w)[0] < (n)) { \ |
149 | (w)[1]++; \ |
150 | } \ |
151 | } |
152 | |
153 | /* |
154 | * Macros for copying blocks of memory and for zeroing out ranges |
155 | * of memory. Using these macros makes it easy to switch from |
156 | * using memset()/memcpy() and using bzero()/bcopy(). |
157 | * |
158 | * Please define either SHA2_USE_MEMSET_MEMCPY or define |
159 | * SHA2_USE_BZERO_BCOPY depending on which function set you |
160 | * choose to use: |
161 | */ |
162 | #if !defined(SHA2_USE_MEMSET_MEMCPY1) && !defined(SHA2_USE_BZERO_BCOPY) |
163 | /* Default to memset()/memcpy() if no option is specified */ |
164 | #define SHA2_USE_MEMSET_MEMCPY1 1 |
165 | #endif |
166 | #if defined(SHA2_USE_MEMSET_MEMCPY1) && defined(SHA2_USE_BZERO_BCOPY) |
167 | /* Abort with an error if BOTH options are defined */ |
168 | #error Define either SHA2_USE_MEMSET_MEMCPY1 or SHA2_USE_BZERO_BCOPY, not both! |
169 | #endif |
170 | |
171 | #ifdef SHA2_USE_MEMSET_MEMCPY1 |
172 | #define MEMSET_BZERO(p,l)memset((p), 0, (l)) memset((p), 0, (l)) |
173 | #define MEMCPY_BCOPY(d,s,l)memcpy((d), (s), (l)) memcpy((d), (s), (l)) |
174 | #endif |
175 | #ifdef SHA2_USE_BZERO_BCOPY |
176 | #define MEMSET_BZERO(p,l)memset((p), 0, (l)) bzero((p), (l)) |
177 | #define MEMCPY_BCOPY(d,s,l)memcpy((d), (s), (l)) bcopy((s), (d), (l)) |
178 | #endif |
179 | |
180 | |
181 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
182 | /* |
183 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
184 | * |
185 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
186 | * S is a ROTATION) because the SHA-256/384/512 description document |
187 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
188 | * same "backwards" definition. |
189 | */ |
190 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
191 | #define R(b,x)((x) >> (b)) ((x) >> (b)) |
192 | /* 32-bit Rotate-right (used in SHA-256): */ |
193 | #define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b)))) |
194 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
195 | #define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b)))) |
196 | |
197 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
198 | #define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z))) |
199 | #define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
200 | |
201 | /* Four of six logical functions used in SHA-256: */ |
202 | #define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x )) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >> (22)) | (((x)) << (32 - (22))))) (S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22))))) |
203 | #define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x )) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >> (25)) | (((x)) << (32 - (25))))) (S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25))))) |
204 | #define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x )) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >> (3))) (S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3))) |
205 | #define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ ((( (x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >> (10))) (S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10))) |
206 | |
207 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
208 | #define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ ((( (x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x)) >> (39)) | (((x)) << (64 - (39))))) (S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39))))) |
209 | #define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ ((( (x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x)) >> (41)) | (((x)) << (64 - (41))))) (S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41))))) |
210 | #define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x )) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >> (7))) (S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7))) |
211 | #define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ ((( (x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >> (6))) (S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6))) |
212 | |
213 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
214 | /* NOTE: These should not be accessed directly from outside this |
215 | * library -- they are intended for private internal visibility/use |
216 | * only. |
217 | */ |
218 | static void SHA256_Last(SHA256_CTX*); |
219 | static void SHA512_Last(SHA512_CTX*); |
220 | static void SHA256_Transform(SHA256_CTX*, const sha2_word32*); |
221 | static void SHA512_Transform(SHA512_CTX*, const sha2_word64*); |
222 | |
223 | |
224 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
225 | /* Hash constant words K for SHA-256: */ |
226 | const static sha2_word32 K256[64] = { |
227 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
228 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
229 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
230 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
231 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
232 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
233 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
234 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
235 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
236 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
237 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
238 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
239 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
240 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
241 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
242 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
243 | }; |
244 | |
245 | /* Initial hash value H for SHA-256: */ |
246 | const static sha2_word32 sha256_initial_hash_value[8] = { |
247 | 0x6a09e667UL, |
248 | 0xbb67ae85UL, |
249 | 0x3c6ef372UL, |
250 | 0xa54ff53aUL, |
251 | 0x510e527fUL, |
252 | 0x9b05688cUL, |
253 | 0x1f83d9abUL, |
254 | 0x5be0cd19UL |
255 | }; |
256 | |
257 | /* Hash constant words K for SHA-384 and SHA-512: */ |
258 | const static sha2_word64 K512[80] = { |
259 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
260 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
261 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
262 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
263 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
264 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
265 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
266 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
267 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
268 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
269 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
270 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
271 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
272 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
273 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
274 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
275 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
276 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
277 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
278 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
279 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
280 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
281 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
282 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
283 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
284 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
285 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
286 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
287 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
288 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
289 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
290 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
291 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
292 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
293 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
294 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
295 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
296 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
297 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
298 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
299 | }; |
300 | |
301 | /* Initial hash value H for SHA-384 */ |
302 | const static sha2_word64 sha384_initial_hash_value[8] = { |
303 | 0xcbbb9d5dc1059ed8ULL, |
304 | 0x629a292a367cd507ULL, |
305 | 0x9159015a3070dd17ULL, |
306 | 0x152fecd8f70e5939ULL, |
307 | 0x67332667ffc00b31ULL, |
308 | 0x8eb44a8768581511ULL, |
309 | 0xdb0c2e0d64f98fa7ULL, |
310 | 0x47b5481dbefa4fa4ULL |
311 | }; |
312 | |
313 | /* Initial hash value H for SHA-512 */ |
314 | const static sha2_word64 sha512_initial_hash_value[8] = { |
315 | 0x6a09e667f3bcc908ULL, |
316 | 0xbb67ae8584caa73bULL, |
317 | 0x3c6ef372fe94f82bULL, |
318 | 0xa54ff53a5f1d36f1ULL, |
319 | 0x510e527fade682d1ULL, |
320 | 0x9b05688c2b3e6c1fULL, |
321 | 0x1f83d9abfb41bd6bULL, |
322 | 0x5be0cd19137e2179ULL |
323 | }; |
324 | |
325 | /* Initial hash value H for SHA-224: */ |
326 | const static sha2_word32 sha224_initial_hash_value[8] = { |
327 | 0xc1059ed8UL, |
328 | 0x367cd507UL, |
329 | 0x3070dd17UL, |
330 | 0xf70e5939UL, |
331 | 0xffc00b31UL, |
332 | 0x68581511UL, |
333 | 0x64f98fa7UL, |
334 | 0xbefa4fa4UL |
335 | }; |
336 | |
337 | |
338 | /*** SHA-256: *********************************************************/ |
339 | void solv_SHA256_Init(SHA256_CTX* context) { |
340 | if (context == (SHA256_CTX*)0) { |
341 | return; |
342 | } |
343 | MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH)memcpy((context->state), (sha256_initial_hash_value), (32) ); |
344 | MEMSET_BZERO((char *)context->buffer, SHA256_BLOCK_LENGTH)memset(((char *)context->buffer), 0, (64)); |
345 | context->bitcount = 0; |
346 | } |
347 | |
348 | #ifdef SHA2_UNROLL_TRANSFORM |
349 | |
350 | /* Unrolled SHA-256 round macros: */ |
351 | |
352 | #ifndef WORDS_BIGENDIAN |
353 | |
354 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (h) + (( (((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + ((((e)) & ((f)) ) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; (d) += T1; ( h) = T1 + (((((a)) >> (2)) | (((a)) << (32 - (2)) )) ^ ((((a)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + (( ((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)) )); j++ \ |
355 | REVERSE32(*data++, W256[j]){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; \ |
356 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
357 | K256[j] + W256[j]; \ |
358 | (d) += T1; \ |
359 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
360 | j++ |
361 | |
362 | |
363 | #else /* !WORDS_BIGENDIAN */ |
364 | |
365 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (h) + (( (((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + ((((e)) & ((f)) ) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; (d) += T1; ( h) = T1 + (((((a)) >> (2)) | (((a)) << (32 - (2)) )) ^ ((((a)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + (( ((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)) )); j++ \ |
366 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
367 | K256[j] + (W256[j] = *data++); \ |
368 | (d) += T1; \ |
369 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
370 | j++ |
371 | |
372 | #endif /* !WORDS_BIGENDIAN */ |
373 | |
374 | #define ROUND256(a,b,c,d,e,f,g,h)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (h) + (((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | ( ((e)) << (32 - (25))))) + ((((e)) & ((f))) ^ ((~((e ))) & ((g)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (d) += T1; (h) = T1 + (((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | ( ((a)) << (32 - (22))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))); j++ \ |
375 | s0 = W256[(j+1)&0x0f]; \ |
376 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); \ |
377 | s1 = W256[(j+14)&0x0f]; \ |
378 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); \ |
379 | T1 = (h) + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \ |
380 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
381 | (d) += T1; \ |
382 | (h) = T1 + Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
383 | j++ |
384 | |
385 | static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
386 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
387 | sha2_word32 T1, *W256; |
388 | int j; |
389 | |
390 | W256 = context->buffer; |
391 | |
392 | /* Initialize registers with the prev. intermediate value */ |
393 | a = context->state[0]; |
394 | b = context->state[1]; |
395 | c = context->state[2]; |
396 | d = context->state[3]; |
397 | e = context->state[4]; |
398 | f = context->state[5]; |
399 | g = context->state[6]; |
400 | h = context->state[7]; |
401 | |
402 | j = 0; |
403 | do { |
404 | /* Rounds 0 to 15 (unrolled): */ |
405 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (h) + (( (((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + ((((e)) & ((f)) ) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; (d) += T1; ( h) = T1 + (((((a)) >> (2)) | (((a)) << (32 - (2)) )) ^ ((((a)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + (( ((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)) )); j++; |
406 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (g) + (( (((d)) >> (6)) | (((d)) << (32 - (6)))) ^ ((((d)) >> (11)) | (((d)) << (32 - (11)))) ^ ((((d)) >> (25)) | (((d)) << (32 - (25))))) + ((((d)) & ((e)) ) ^ ((~((d))) & ((f)))) + K256[j] + W256[j]; (c) += T1; ( g) = T1 + (((((h)) >> (2)) | (((h)) << (32 - (2)) )) ^ ((((h)) >> (13)) | (((h)) << (32 - (13)))) ^ ((((h)) >> (22)) | (((h)) << (32 - (22))))) + (( ((h)) & ((a))) ^ (((h)) & ((b))) ^ (((a)) & ((b)) )); j++; |
407 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (f) + (( (((c)) >> (6)) | (((c)) << (32 - (6)))) ^ ((((c)) >> (11)) | (((c)) << (32 - (11)))) ^ ((((c)) >> (25)) | (((c)) << (32 - (25))))) + ((((c)) & ((d)) ) ^ ((~((c))) & ((e)))) + K256[j] + W256[j]; (b) += T1; ( f) = T1 + (((((g)) >> (2)) | (((g)) << (32 - (2)) )) ^ ((((g)) >> (13)) | (((g)) << (32 - (13)))) ^ ((((g)) >> (22)) | (((g)) << (32 - (22))))) + (( ((g)) & ((h))) ^ (((g)) & ((a))) ^ (((h)) & ((a)) )); j++; |
408 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (e) + (( (((b)) >> (6)) | (((b)) << (32 - (6)))) ^ ((((b)) >> (11)) | (((b)) << (32 - (11)))) ^ ((((b)) >> (25)) | (((b)) << (32 - (25))))) + ((((b)) & ((c)) ) ^ ((~((b))) & ((d)))) + K256[j] + W256[j]; (a) += T1; ( e) = T1 + (((((f)) >> (2)) | (((f)) << (32 - (2)) )) ^ ((((f)) >> (13)) | (((f)) << (32 - (13)))) ^ ((((f)) >> (22)) | (((f)) << (32 - (22))))) + (( ((f)) & ((g))) ^ (((f)) & ((h))) ^ (((g)) & ((h)) )); j++; |
409 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (d) + (( (((a)) >> (6)) | (((a)) << (32 - (6)))) ^ ((((a)) >> (11)) | (((a)) << (32 - (11)))) ^ ((((a)) >> (25)) | (((a)) << (32 - (25))))) + ((((a)) & ((b)) ) ^ ((~((a))) & ((c)))) + K256[j] + W256[j]; (h) += T1; ( d) = T1 + (((((e)) >> (2)) | (((e)) << (32 - (2)) )) ^ ((((e)) >> (13)) | (((e)) << (32 - (13)))) ^ ((((e)) >> (22)) | (((e)) << (32 - (22))))) + (( ((e)) & ((f))) ^ (((e)) & ((g))) ^ (((f)) & ((g)) )); j++; |
410 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (c) + (( (((h)) >> (6)) | (((h)) << (32 - (6)))) ^ ((((h)) >> (11)) | (((h)) << (32 - (11)))) ^ ((((h)) >> (25)) | (((h)) << (32 - (25))))) + ((((h)) & ((a)) ) ^ ((~((h))) & ((b)))) + K256[j] + W256[j]; (g) += T1; ( c) = T1 + (((((d)) >> (2)) | (((d)) << (32 - (2)) )) ^ ((((d)) >> (13)) | (((d)) << (32 - (13)))) ^ ((((d)) >> (22)) | (((d)) << (32 - (22))))) + (( ((d)) & ((e))) ^ (((d)) & ((f))) ^ (((e)) & ((f)) )); j++; |
411 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (b) + (( (((g)) >> (6)) | (((g)) << (32 - (6)))) ^ ((((g)) >> (11)) | (((g)) << (32 - (11)))) ^ ((((g)) >> (25)) | (((g)) << (32 - (25))))) + ((((g)) & ((h)) ) ^ ((~((g))) & ((a)))) + K256[j] + W256[j]; (f) += T1; ( b) = T1 + (((((c)) >> (2)) | (((c)) << (32 - (2)) )) ^ ((((c)) >> (13)) | (((c)) << (32 - (13)))) ^ ((((c)) >> (22)) | (((c)) << (32 - (22))))) + (( ((c)) & ((d))) ^ (((c)) & ((e))) ^ (((d)) & ((e)) )); j++; |
412 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; T1 = (a) + (( (((f)) >> (6)) | (((f)) << (32 - (6)))) ^ ((((f)) >> (11)) | (((f)) << (32 - (11)))) ^ ((((f)) >> (25)) | (((f)) << (32 - (25))))) + ((((f)) & ((g)) ) ^ ((~((f))) & ((h)))) + K256[j] + W256[j]; (e) += T1; ( a) = T1 + (((((b)) >> (2)) | (((b)) << (32 - (2)) )) ^ ((((b)) >> (13)) | (((b)) << (32 - (13)))) ^ ((((b)) >> (22)) | (((b)) << (32 - (22))))) + (( ((b)) & ((c))) ^ (((b)) & ((d))) ^ (((c)) & ((d)) )); j++; |
413 | } while (j < 16); |
414 | |
415 | /* Now for the remaining rounds to 64: */ |
416 | do { |
417 | ROUND256(a,b,c,d,e,f,g,h)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (h) + (((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e)) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | ( ((e)) << (32 - (25))))) + ((((e)) & ((f))) ^ ((~((e ))) & ((g)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (d) += T1; (h) = T1 + (((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a)) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | ( ((a)) << (32 - (22))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))); j++; |
418 | ROUND256(h,a,b,c,d,e,f,g)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (g) + (((((d)) >> (6)) | (((d)) << (32 - (6)))) ^ ((((d)) >> (11)) | (((d)) << (32 - (11)))) ^ ((((d)) >> (25)) | ( ((d)) << (32 - (25))))) + ((((d)) & ((e))) ^ ((~((d ))) & ((f)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (c) += T1; (g) = T1 + (((((h)) >> (2)) | (((h)) << (32 - (2)))) ^ ((((h)) >> (13)) | (((h)) << (32 - (13)))) ^ ((((h)) >> (22)) | ( ((h)) << (32 - (22))))) + ((((h)) & ((a))) ^ (((h)) & ((b))) ^ (((a)) & ((b)))); j++; |
419 | ROUND256(g,h,a,b,c,d,e,f)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (f) + (((((c)) >> (6)) | (((c)) << (32 - (6)))) ^ ((((c)) >> (11)) | (((c)) << (32 - (11)))) ^ ((((c)) >> (25)) | ( ((c)) << (32 - (25))))) + ((((c)) & ((d))) ^ ((~((c ))) & ((e)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (b) += T1; (f) = T1 + (((((g)) >> (2)) | (((g)) << (32 - (2)))) ^ ((((g)) >> (13)) | (((g)) << (32 - (13)))) ^ ((((g)) >> (22)) | ( ((g)) << (32 - (22))))) + ((((g)) & ((h))) ^ (((g)) & ((a))) ^ (((h)) & ((a)))); j++; |
420 | ROUND256(f,g,h,a,b,c,d,e)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (e) + (((((b)) >> (6)) | (((b)) << (32 - (6)))) ^ ((((b)) >> (11)) | (((b)) << (32 - (11)))) ^ ((((b)) >> (25)) | ( ((b)) << (32 - (25))))) + ((((b)) & ((c))) ^ ((~((b ))) & ((d)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (a) += T1; (e) = T1 + (((((f)) >> (2)) | (((f)) << (32 - (2)))) ^ ((((f)) >> (13)) | (((f)) << (32 - (13)))) ^ ((((f)) >> (22)) | ( ((f)) << (32 - (22))))) + ((((f)) & ((g))) ^ (((f)) & ((h))) ^ (((g)) & ((h)))); j++; |
421 | ROUND256(e,f,g,h,a,b,c,d)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (d) + (((((a)) >> (6)) | (((a)) << (32 - (6)))) ^ ((((a)) >> (11)) | (((a)) << (32 - (11)))) ^ ((((a)) >> (25)) | ( ((a)) << (32 - (25))))) + ((((a)) & ((b))) ^ ((~((a ))) & ((c)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (h) += T1; (d) = T1 + (((((e)) >> (2)) | (((e)) << (32 - (2)))) ^ ((((e)) >> (13)) | (((e)) << (32 - (13)))) ^ ((((e)) >> (22)) | ( ((e)) << (32 - (22))))) + ((((e)) & ((f))) ^ (((e)) & ((g))) ^ (((f)) & ((g)))); j++; |
422 | ROUND256(d,e,f,g,h,a,b,c)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (c) + (((((h)) >> (6)) | (((h)) << (32 - (6)))) ^ ((((h)) >> (11)) | (((h)) << (32 - (11)))) ^ ((((h)) >> (25)) | ( ((h)) << (32 - (25))))) + ((((h)) & ((a))) ^ ((~((h ))) & ((b)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (g) += T1; (c) = T1 + (((((d)) >> (2)) | (((d)) << (32 - (2)))) ^ ((((d)) >> (13)) | (((d)) << (32 - (13)))) ^ ((((d)) >> (22)) | ( ((d)) << (32 - (22))))) + ((((d)) & ((e))) ^ (((d)) & ((f))) ^ (((e)) & ((f)))); j++; |
423 | ROUND256(c,d,e,f,g,h,a,b)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (b) + (((((g)) >> (6)) | (((g)) << (32 - (6)))) ^ ((((g)) >> (11)) | (((g)) << (32 - (11)))) ^ ((((g)) >> (25)) | ( ((g)) << (32 - (25))))) + ((((g)) & ((h))) ^ ((~((g ))) & ((a)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (f) += T1; (b) = T1 + (((((c)) >> (2)) | (((c)) << (32 - (2)))) ^ ((((c)) >> (13)) | (((c)) << (32 - (13)))) ^ ((((c)) >> (22)) | ( ((c)) << (32 - (22))))) + ((((c)) & ((d))) ^ (((c)) & ((e))) ^ (((d)) & ((e)))); j++; |
424 | ROUND256(b,c,d,e,f,g,h,a)s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | ((( s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (((s0) ) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256[ (j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (a) + (((((f)) >> (6)) | (((f)) << (32 - (6)))) ^ ((((f)) >> (11)) | (((f)) << (32 - (11)))) ^ ((((f)) >> (25)) | ( ((f)) << (32 - (25))))) + ((((f)) & ((g))) ^ ((~((f ))) & ((h)))) + K256[j] + (W256[j&0x0f] += s1 + W256[ (j+9)&0x0f] + s0); (e) += T1; (a) = T1 + (((((b)) >> (2)) | (((b)) << (32 - (2)))) ^ ((((b)) >> (13)) | (((b)) << (32 - (13)))) ^ ((((b)) >> (22)) | ( ((b)) << (32 - (22))))) + ((((b)) & ((c))) ^ (((b)) & ((d))) ^ (((c)) & ((d)))); j++; |
425 | } while (j < 64); |
426 | |
427 | /* Compute the current intermediate hash value */ |
428 | context->state[0] += a; |
429 | context->state[1] += b; |
430 | context->state[2] += c; |
431 | context->state[3] += d; |
432 | context->state[4] += e; |
433 | context->state[5] += f; |
434 | context->state[6] += g; |
435 | context->state[7] += h; |
436 | |
437 | /* Clean up */ |
438 | a = b = c = d = e = f = g = h = T1 = 0; |
Value stored to 'a' is never read | |
439 | } |
440 | |
441 | #else /* SHA2_UNROLL_TRANSFORM */ |
442 | |
443 | static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { |
444 | sha2_word32 a, b, c, d, e, f, g, h, s0, s1; |
445 | sha2_word32 T1, T2, *W256; |
446 | int j; |
447 | |
448 | W256 = context->buffer; |
449 | |
450 | /* Initialize registers with the prev. intermediate value */ |
451 | a = context->state[0]; |
452 | b = context->state[1]; |
453 | c = context->state[2]; |
454 | d = context->state[3]; |
455 | e = context->state[4]; |
456 | f = context->state[5]; |
457 | g = context->state[6]; |
458 | h = context->state[7]; |
459 | |
460 | j = 0; |
461 | do { |
462 | #ifndef WORDS_BIGENDIAN |
463 | /* Copy data while converting to host byte order */ |
464 | REVERSE32(*data++,W256[j]){ sha2_word32 tmp = (*data++); tmp = (tmp >> 16) | (tmp << 16); (W256[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
465 | /* Apply the SHA-256 compression function to update a..h */ |
466 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j]; |
467 | #else /* !WORDS_BIGENDIAN */ |
468 | /* Apply the SHA-256 compression function to update a..h with copy */ |
469 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + (W256[j] = *data++); |
470 | #endif /* !WORDS_BIGENDIAN */ |
471 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
472 | h = g; |
473 | g = f; |
474 | f = e; |
475 | e = d + T1; |
476 | d = c; |
477 | c = b; |
478 | b = a; |
479 | a = T1 + T2; |
480 | |
481 | j++; |
482 | } while (j < 16); |
483 | |
484 | do { |
485 | /* Part of the message block expansion: */ |
486 | s0 = W256[(j+1)&0x0f]; |
487 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); |
488 | s1 = W256[(j+14)&0x0f]; |
489 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); |
490 | |
491 | /* Apply the SHA-256 compression function to update a..h */ |
492 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + |
493 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
494 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
495 | h = g; |
496 | g = f; |
497 | f = e; |
498 | e = d + T1; |
499 | d = c; |
500 | c = b; |
501 | b = a; |
502 | a = T1 + T2; |
503 | |
504 | j++; |
505 | } while (j < 64); |
506 | |
507 | /* Compute the current intermediate hash value */ |
508 | context->state[0] += a; |
509 | context->state[1] += b; |
510 | context->state[2] += c; |
511 | context->state[3] += d; |
512 | context->state[4] += e; |
513 | context->state[5] += f; |
514 | context->state[6] += g; |
515 | context->state[7] += h; |
516 | |
517 | /* Clean up */ |
518 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
519 | } |
520 | |
521 | #endif /* SHA2_UNROLL_TRANSFORM */ |
522 | |
523 | void solv_SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { |
524 | unsigned int freespace, usedspace; |
525 | |
526 | if (len == 0) { |
527 | /* Calling with no data is valid - we do nothing */ |
528 | return; |
529 | } |
530 | |
531 | /* Sanity check: */ |
532 | /* assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); */ |
533 | |
534 | usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH64; |
535 | if (usedspace > 0) { |
536 | /* Calculate how much free space is available in the buffer */ |
537 | freespace = SHA256_BLOCK_LENGTH64 - usedspace; |
538 | |
539 | if (len >= freespace) { |
540 | /* Fill the buffer completely and process it */ |
541 | MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace)memcpy((&((char *)context->buffer)[usedspace]), (data) , (freespace)); |
542 | context->bitcount += freespace << 3; |
543 | len -= freespace; |
544 | data += freespace; |
545 | SHA256_Transform(context, context->buffer); |
546 | } else { |
547 | /* The buffer is not yet full */ |
548 | MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len)memcpy((&((char *)context->buffer)[usedspace]), (data) , (len)); |
549 | context->bitcount += len << 3; |
550 | /* Clean up: */ |
551 | usedspace = freespace = 0; |
552 | return; |
553 | } |
554 | } |
555 | while (len >= SHA256_BLOCK_LENGTH64) { |
556 | /* Process as many complete blocks as we can */ |
557 | SHA256_Transform(context, (sha2_word32*)data); |
558 | context->bitcount += SHA256_BLOCK_LENGTH64 << 3; |
559 | len -= SHA256_BLOCK_LENGTH64; |
560 | data += SHA256_BLOCK_LENGTH64; |
561 | } |
562 | if (len > 0) { |
563 | /* There's left-overs, so save 'em */ |
564 | MEMCPY_BCOPY((char *)context->buffer, data, len)memcpy(((char *)context->buffer), (data), (len)); |
565 | context->bitcount += len << 3; |
566 | } |
567 | /* Clean up: */ |
568 | usedspace = freespace = 0; |
569 | } |
570 | |
571 | static void SHA256_Last(SHA256_CTX* context) { |
572 | unsigned int usedspace; |
573 | |
574 | usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH64; |
575 | #ifndef WORDS_BIGENDIAN |
576 | /* Convert FROM host byte order */ |
577 | REVERSE64(context->bitcount,context->bitcount){ sha2_word64 tmp = (context->bitcount); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8 ); (context->bitcount) = ((tmp & 0xffff0000ffff0000ULL ) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16 ); }; |
578 | #endif |
579 | if (usedspace > 0) { |
580 | /* Begin padding with a 1 bit: */ |
581 | ((char *)context->buffer)[usedspace++] = 0x80; |
582 | |
583 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) { |
584 | /* Set-up for the last transform: */ |
585 | MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace)memset((&((char *)context->buffer)[usedspace]), 0, ((64 - 8) - usedspace)); |
586 | } else { |
587 | if (usedspace < SHA256_BLOCK_LENGTH64) { |
588 | MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_BLOCK_LENGTH - usedspace)memset((&((char *)context->buffer)[usedspace]), 0, (64 - usedspace)); |
589 | } |
590 | /* Do second-to-last transform: */ |
591 | SHA256_Transform(context, context->buffer); |
592 | |
593 | /* And set-up for the last transform: */ |
594 | MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH)memset(((char *)context->buffer), 0, ((64 - 8))); |
595 | } |
596 | } else { |
597 | /* Set-up for the last transform: */ |
598 | MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH)memset(((char *)context->buffer), 0, ((64 - 8))); |
599 | |
600 | /* Begin padding with a 1 bit: */ |
601 | *((char *)context->buffer) = 0x80; |
602 | } |
603 | /* Set the bit count: */ |
604 | MEMCPY_BCOPY(&((char *)context->buffer)[SHA256_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount), 8)memcpy((&((char *)context->buffer)[(64 - 8)]), ((char * )(&context->bitcount)), (8)); |
605 | |
606 | /* Final transform: */ |
607 | SHA256_Transform(context, context->buffer); |
608 | } |
609 | |
610 | void solv_SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { |
611 | sha2_word32 *d = (sha2_word32*)digest; |
612 | |
613 | /* Sanity check: */ |
614 | /* assert(context != (SHA256_CTX*)0); */ |
615 | |
616 | /* If no digest buffer is passed, we don't bother doing this: */ |
617 | if (digest != (sha2_byte*)0) { |
618 | SHA256_Last(context); |
619 | |
620 | #ifndef WORDS_BIGENDIAN |
621 | { |
622 | /* Convert TO host byte order */ |
623 | int j; |
624 | for (j = 0; j < 8; j++) { |
625 | REVERSE32(context->state[j],context->state[j]){ sha2_word32 tmp = (context->state[j]); tmp = (tmp >> 16) | (tmp << 16); (context->state[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
626 | *d++ = context->state[j]; |
627 | } |
628 | } |
629 | #else |
630 | MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH)memcpy((d), (context->state), (32)); |
631 | #endif |
632 | } |
633 | |
634 | /* Clean up state data: */ |
635 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
636 | } |
637 | |
638 | |
639 | /*** SHA-512: *********************************************************/ |
640 | void solv_SHA512_Init(SHA512_CTX* context) { |
641 | if (context == (SHA512_CTX*)0) { |
642 | return; |
643 | } |
644 | MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH)memcpy((context->state), (sha512_initial_hash_value), (64) ); |
645 | MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH)memset(((char *)context->buffer), 0, (128)); |
646 | context->bitcount[0] = context->bitcount[1] = 0; |
647 | } |
648 | |
649 | #ifdef SHA2_UNROLL_TRANSFORM |
650 | |
651 | /* Unrolled SHA-512 round macros: */ |
652 | #ifndef WORDS_BIGENDIAN |
653 | |
654 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (h) + (((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((((e)) >> (18 )) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + ((((e)) & ((f))) ^ ((~( (e))) & ((g)))) + K512[j] + W512[j]; (d) += T1, (h) = T1 + (((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ (( ((a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a) ) >> (39)) | (((a)) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))), j++ \ |
655 | REVERSE64(*data++, W512[j]){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; \ |
656 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
657 | K512[j] + W512[j]; \ |
658 | (d) += T1, \ |
659 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))), \ |
660 | j++ |
661 | |
662 | |
663 | #else /* !WORDS_BIGENDIAN */ |
664 | |
665 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (h) + (((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((((e)) >> (18 )) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + ((((e)) & ((f))) ^ ((~( (e))) & ((g)))) + K512[j] + W512[j]; (d) += T1, (h) = T1 + (((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ (( ((a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a) ) >> (39)) | (((a)) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))), j++ \ |
666 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + \ |
667 | K512[j] + (W512[j] = *data++); \ |
668 | (d) += T1; \ |
669 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
670 | j++ |
671 | |
672 | #endif /* !WORDS_BIGENDIAN */ |
673 | |
674 | #define ROUND512(a,b,c,d,e,f,g,h)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (h) + (((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((((e)) >> (18 )) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + ((((e)) & ((f))) ^ ((~( (e))) & ((g)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (d) += T1; (h) = T1 + (((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((((a)) >> (34 )) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a )) & ((c))) ^ (((b)) & ((c)))); j++ \ |
675 | s0 = W512[(j+1)&0x0f]; \ |
676 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); \ |
677 | s1 = W512[(j+14)&0x0f]; \ |
678 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); \ |
679 | T1 = (h) + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \ |
680 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
681 | (d) += T1; \ |
682 | (h) = T1 + Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
683 | j++ |
684 | |
685 | static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
686 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
687 | sha2_word64 T1, *W512 = context->buffer; |
688 | int j; |
689 | |
690 | /* Initialize registers with the prev. intermediate value */ |
691 | a = context->state[0]; |
692 | b = context->state[1]; |
693 | c = context->state[2]; |
694 | d = context->state[3]; |
695 | e = context->state[4]; |
696 | f = context->state[5]; |
697 | g = context->state[6]; |
698 | h = context->state[7]; |
699 | |
700 | j = 0; |
701 | do { |
702 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (h) + (((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((((e)) >> (18 )) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + ((((e)) & ((f))) ^ ((~( (e))) & ((g)))) + K512[j] + W512[j]; (d) += T1, (h) = T1 + (((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ (( ((a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a) ) >> (39)) | (((a)) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))), j++; |
703 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (g) + (((((d)) >> (14)) | (((d)) << (64 - (14)))) ^ ((((d)) >> (18 )) | (((d)) << (64 - (18)))) ^ ((((d)) >> (41)) | (((d)) << (64 - (41))))) + ((((d)) & ((e))) ^ ((~( (d))) & ((f)))) + K512[j] + W512[j]; (c) += T1, (g) = T1 + (((((h)) >> (28)) | (((h)) << (64 - (28)))) ^ (( ((h)) >> (34)) | (((h)) << (64 - (34)))) ^ ((((h) ) >> (39)) | (((h)) << (64 - (39))))) + ((((h)) & ((a))) ^ (((h)) & ((b))) ^ (((a)) & ((b)))), j++; |
704 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (f) + (((((c)) >> (14)) | (((c)) << (64 - (14)))) ^ ((((c)) >> (18 )) | (((c)) << (64 - (18)))) ^ ((((c)) >> (41)) | (((c)) << (64 - (41))))) + ((((c)) & ((d))) ^ ((~( (c))) & ((e)))) + K512[j] + W512[j]; (b) += T1, (f) = T1 + (((((g)) >> (28)) | (((g)) << (64 - (28)))) ^ (( ((g)) >> (34)) | (((g)) << (64 - (34)))) ^ ((((g) ) >> (39)) | (((g)) << (64 - (39))))) + ((((g)) & ((h))) ^ (((g)) & ((a))) ^ (((h)) & ((a)))), j++; |
705 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (e) + (((((b)) >> (14)) | (((b)) << (64 - (14)))) ^ ((((b)) >> (18 )) | (((b)) << (64 - (18)))) ^ ((((b)) >> (41)) | (((b)) << (64 - (41))))) + ((((b)) & ((c))) ^ ((~( (b))) & ((d)))) + K512[j] + W512[j]; (a) += T1, (e) = T1 + (((((f)) >> (28)) | (((f)) << (64 - (28)))) ^ (( ((f)) >> (34)) | (((f)) << (64 - (34)))) ^ ((((f) ) >> (39)) | (((f)) << (64 - (39))))) + ((((f)) & ((g))) ^ (((f)) & ((h))) ^ (((g)) & ((h)))), j++; |
706 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (d) + (((((a)) >> (14)) | (((a)) << (64 - (14)))) ^ ((((a)) >> (18 )) | (((a)) << (64 - (18)))) ^ ((((a)) >> (41)) | (((a)) << (64 - (41))))) + ((((a)) & ((b))) ^ ((~( (a))) & ((c)))) + K512[j] + W512[j]; (h) += T1, (d) = T1 + (((((e)) >> (28)) | (((e)) << (64 - (28)))) ^ (( ((e)) >> (34)) | (((e)) << (64 - (34)))) ^ ((((e) ) >> (39)) | (((e)) << (64 - (39))))) + ((((e)) & ((f))) ^ (((e)) & ((g))) ^ (((f)) & ((g)))), j++; |
707 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (c) + (((((h)) >> (14)) | (((h)) << (64 - (14)))) ^ ((((h)) >> (18 )) | (((h)) << (64 - (18)))) ^ ((((h)) >> (41)) | (((h)) << (64 - (41))))) + ((((h)) & ((a))) ^ ((~( (h))) & ((b)))) + K512[j] + W512[j]; (g) += T1, (c) = T1 + (((((d)) >> (28)) | (((d)) << (64 - (28)))) ^ (( ((d)) >> (34)) | (((d)) << (64 - (34)))) ^ ((((d) ) >> (39)) | (((d)) << (64 - (39))))) + ((((d)) & ((e))) ^ (((d)) & ((f))) ^ (((e)) & ((f)))), j++; |
708 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (b) + (((((g)) >> (14)) | (((g)) << (64 - (14)))) ^ ((((g)) >> (18 )) | (((g)) << (64 - (18)))) ^ ((((g)) >> (41)) | (((g)) << (64 - (41))))) + ((((g)) & ((h))) ^ ((~( (g))) & ((a)))) + K512[j] + W512[j]; (f) += T1, (b) = T1 + (((((c)) >> (28)) | (((c)) << (64 - (28)))) ^ (( ((c)) >> (34)) | (((c)) << (64 - (34)))) ^ ((((c) ) >> (39)) | (((c)) << (64 - (39))))) + ((((c)) & ((d))) ^ (((c)) & ((e))) ^ (((d)) & ((e)))), j++; |
709 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; T1 = (a) + (((((f)) >> (14)) | (((f)) << (64 - (14)))) ^ ((((f)) >> (18 )) | (((f)) << (64 - (18)))) ^ ((((f)) >> (41)) | (((f)) << (64 - (41))))) + ((((f)) & ((g))) ^ ((~( (f))) & ((h)))) + K512[j] + W512[j]; (e) += T1, (a) = T1 + (((((b)) >> (28)) | (((b)) << (64 - (28)))) ^ (( ((b)) >> (34)) | (((b)) << (64 - (34)))) ^ ((((b) ) >> (39)) | (((b)) << (64 - (39))))) + ((((b)) & ((c))) ^ (((b)) & ((d))) ^ (((c)) & ((d)))), j++; |
710 | } while (j < 16); |
711 | |
712 | /* Now for the remaining rounds up to 79: */ |
713 | do { |
714 | ROUND512(a,b,c,d,e,f,g,h)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (h) + (((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((((e)) >> (18 )) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + ((((e)) & ((f))) ^ ((~( (e))) & ((g)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (d) += T1; (h) = T1 + (((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((((a)) >> (34 )) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a )) & ((c))) ^ (((b)) & ((c)))); j++; |
715 | ROUND512(h,a,b,c,d,e,f,g)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (g) + (((((d)) >> (14)) | (((d)) << (64 - (14)))) ^ ((((d)) >> (18 )) | (((d)) << (64 - (18)))) ^ ((((d)) >> (41)) | (((d)) << (64 - (41))))) + ((((d)) & ((e))) ^ ((~( (d))) & ((f)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (c) += T1; (g) = T1 + (((((h)) >> (28)) | (((h)) << (64 - (28)))) ^ ((((h)) >> (34 )) | (((h)) << (64 - (34)))) ^ ((((h)) >> (39)) | (((h)) << (64 - (39))))) + ((((h)) & ((a))) ^ (((h )) & ((b))) ^ (((a)) & ((b)))); j++; |
716 | ROUND512(g,h,a,b,c,d,e,f)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (f) + (((((c)) >> (14)) | (((c)) << (64 - (14)))) ^ ((((c)) >> (18 )) | (((c)) << (64 - (18)))) ^ ((((c)) >> (41)) | (((c)) << (64 - (41))))) + ((((c)) & ((d))) ^ ((~( (c))) & ((e)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (b) += T1; (f) = T1 + (((((g)) >> (28)) | (((g)) << (64 - (28)))) ^ ((((g)) >> (34 )) | (((g)) << (64 - (34)))) ^ ((((g)) >> (39)) | (((g)) << (64 - (39))))) + ((((g)) & ((h))) ^ (((g )) & ((a))) ^ (((h)) & ((a)))); j++; |
717 | ROUND512(f,g,h,a,b,c,d,e)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (e) + (((((b)) >> (14)) | (((b)) << (64 - (14)))) ^ ((((b)) >> (18 )) | (((b)) << (64 - (18)))) ^ ((((b)) >> (41)) | (((b)) << (64 - (41))))) + ((((b)) & ((c))) ^ ((~( (b))) & ((d)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (a) += T1; (e) = T1 + (((((f)) >> (28)) | (((f)) << (64 - (28)))) ^ ((((f)) >> (34 )) | (((f)) << (64 - (34)))) ^ ((((f)) >> (39)) | (((f)) << (64 - (39))))) + ((((f)) & ((g))) ^ (((f )) & ((h))) ^ (((g)) & ((h)))); j++; |
718 | ROUND512(e,f,g,h,a,b,c,d)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (d) + (((((a)) >> (14)) | (((a)) << (64 - (14)))) ^ ((((a)) >> (18 )) | (((a)) << (64 - (18)))) ^ ((((a)) >> (41)) | (((a)) << (64 - (41))))) + ((((a)) & ((b))) ^ ((~( (a))) & ((c)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (h) += T1; (d) = T1 + (((((e)) >> (28)) | (((e)) << (64 - (28)))) ^ ((((e)) >> (34 )) | (((e)) << (64 - (34)))) ^ ((((e)) >> (39)) | (((e)) << (64 - (39))))) + ((((e)) & ((f))) ^ (((e )) & ((g))) ^ (((f)) & ((g)))); j++; |
719 | ROUND512(d,e,f,g,h,a,b,c)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (c) + (((((h)) >> (14)) | (((h)) << (64 - (14)))) ^ ((((h)) >> (18 )) | (((h)) << (64 - (18)))) ^ ((((h)) >> (41)) | (((h)) << (64 - (41))))) + ((((h)) & ((a))) ^ ((~( (h))) & ((b)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (g) += T1; (c) = T1 + (((((d)) >> (28)) | (((d)) << (64 - (28)))) ^ ((((d)) >> (34 )) | (((d)) << (64 - (34)))) ^ ((((d)) >> (39)) | (((d)) << (64 - (39))))) + ((((d)) & ((e))) ^ (((d )) & ((f))) ^ (((e)) & ((f)))); j++; |
720 | ROUND512(c,d,e,f,g,h,a,b)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (b) + (((((g)) >> (14)) | (((g)) << (64 - (14)))) ^ ((((g)) >> (18 )) | (((g)) << (64 - (18)))) ^ ((((g)) >> (41)) | (((g)) << (64 - (41))))) + ((((g)) & ((h))) ^ ((~( (g))) & ((a)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (f) += T1; (b) = T1 + (((((c)) >> (28)) | (((c)) << (64 - (28)))) ^ ((((c)) >> (34 )) | (((c)) << (64 - (34)))) ^ ((((c)) >> (39)) | (((c)) << (64 - (39))))) + ((((c)) & ((d))) ^ (((c )) & ((e))) ^ (((d)) & ((e)))); j++; |
721 | ROUND512(b,c,d,e,f,g,h,a)s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | ((( s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512[(j +14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (a) + (((((f)) >> (14)) | (((f)) << (64 - (14)))) ^ ((((f)) >> (18 )) | (((f)) << (64 - (18)))) ^ ((((f)) >> (41)) | (((f)) << (64 - (41))))) + ((((f)) & ((g))) ^ ((~( (f))) & ((h)))) + K512[j] + (W512[j&0x0f] += s1 + W512 [(j+9)&0x0f] + s0); (e) += T1; (a) = T1 + (((((b)) >> (28)) | (((b)) << (64 - (28)))) ^ ((((b)) >> (34 )) | (((b)) << (64 - (34)))) ^ ((((b)) >> (39)) | (((b)) << (64 - (39))))) + ((((b)) & ((c))) ^ (((b )) & ((d))) ^ (((c)) & ((d)))); j++; |
722 | } while (j < 80); |
723 | |
724 | /* Compute the current intermediate hash value */ |
725 | context->state[0] += a; |
726 | context->state[1] += b; |
727 | context->state[2] += c; |
728 | context->state[3] += d; |
729 | context->state[4] += e; |
730 | context->state[5] += f; |
731 | context->state[6] += g; |
732 | context->state[7] += h; |
733 | |
734 | /* Clean up */ |
735 | a = b = c = d = e = f = g = h = T1 = 0; |
736 | } |
737 | |
738 | #else /* SHA2_UNROLL_TRANSFORM */ |
739 | |
740 | static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { |
741 | sha2_word64 a, b, c, d, e, f, g, h, s0, s1; |
742 | sha2_word64 T1, T2, *W512 = context->buffer; |
743 | int j; |
744 | |
745 | /* Initialize registers with the prev. intermediate value */ |
746 | a = context->state[0]; |
747 | b = context->state[1]; |
748 | c = context->state[2]; |
749 | d = context->state[3]; |
750 | e = context->state[4]; |
751 | f = context->state[5]; |
752 | g = context->state[6]; |
753 | h = context->state[7]; |
754 | |
755 | j = 0; |
756 | do { |
757 | #ifndef WORDS_BIGENDIAN |
758 | /* Convert TO host byte order */ |
759 | REVERSE64(*data++, W512[j]){ sha2_word64 tmp = (*data++); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8); (W512[j ]) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16); }; |
760 | /* Apply the SHA-512 compression function to update a..h */ |
761 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j]; |
762 | #else /* !WORDS_BIGENDIAN */ |
763 | /* Apply the SHA-512 compression function to update a..h with copy */ |
764 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + (W512[j] = *data++); |
765 | #endif /* !WORDS_BIGENDIAN */ |
766 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
767 | h = g; |
768 | g = f; |
769 | f = e; |
770 | e = d + T1; |
771 | d = c; |
772 | c = b; |
773 | b = a; |
774 | a = T1 + T2; |
775 | |
776 | j++; |
777 | } while (j < 16); |
778 | |
779 | do { |
780 | /* Part of the message block expansion: */ |
781 | s0 = W512[(j+1)&0x0f]; |
782 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); |
783 | s1 = W512[(j+14)&0x0f]; |
784 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); |
785 | |
786 | /* Apply the SHA-512 compression function to update a..h */ |
787 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + |
788 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
789 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
790 | h = g; |
791 | g = f; |
792 | f = e; |
793 | e = d + T1; |
794 | d = c; |
795 | c = b; |
796 | b = a; |
797 | a = T1 + T2; |
798 | |
799 | j++; |
800 | } while (j < 80); |
801 | |
802 | /* Compute the current intermediate hash value */ |
803 | context->state[0] += a; |
804 | context->state[1] += b; |
805 | context->state[2] += c; |
806 | context->state[3] += d; |
807 | context->state[4] += e; |
808 | context->state[5] += f; |
809 | context->state[6] += g; |
810 | context->state[7] += h; |
811 | |
812 | /* Clean up */ |
813 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
814 | } |
815 | |
816 | #endif /* SHA2_UNROLL_TRANSFORM */ |
817 | |
818 | void solv_SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { |
819 | unsigned int freespace, usedspace; |
820 | |
821 | if (len == 0) { |
822 | /* Calling with no data is valid - we do nothing */ |
823 | return; |
824 | } |
825 | |
826 | /* Sanity check: */ |
827 | /* assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); */ |
828 | |
829 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; |
830 | if (usedspace > 0) { |
831 | /* Calculate how much free space is available in the buffer */ |
832 | freespace = SHA512_BLOCK_LENGTH128 - usedspace; |
833 | |
834 | if (len >= freespace) { |
835 | /* Fill the buffer completely and process it */ |
836 | MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace)memcpy((&((char *)context->buffer)[usedspace]), (data) , (freespace)); |
837 | ADDINC128(context->bitcount, freespace << 3){ (context->bitcount)[0] += (sha2_word64)(freespace << 3); if ((context->bitcount)[0] < (freespace << 3 )) { (context->bitcount)[1]++; } }; |
838 | len -= freespace; |
839 | data += freespace; |
840 | SHA512_Transform(context, context->buffer); |
841 | } else { |
842 | /* The buffer is not yet full */ |
843 | MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len)memcpy((&((char *)context->buffer)[usedspace]), (data) , (len)); |
844 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (sha2_word64)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
845 | /* Clean up: */ |
846 | usedspace = freespace = 0; |
847 | return; |
848 | } |
849 | } |
850 | while (len >= SHA512_BLOCK_LENGTH128) { |
851 | /* Process as many complete blocks as we can */ |
852 | SHA512_Transform(context, (sha2_word64*)data); |
853 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3){ (context->bitcount)[0] += (sha2_word64)(128 << 3); if ((context->bitcount)[0] < (128 << 3)) { (context ->bitcount)[1]++; } }; |
854 | len -= SHA512_BLOCK_LENGTH128; |
855 | data += SHA512_BLOCK_LENGTH128; |
856 | } |
857 | if (len > 0) { |
858 | /* There's left-overs, so save 'em */ |
859 | MEMCPY_BCOPY((char *)context->buffer, data, len)memcpy(((char *)context->buffer), (data), (len)); |
860 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (sha2_word64)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
861 | } |
862 | /* Clean up: */ |
863 | usedspace = freespace = 0; |
864 | } |
865 | |
866 | static void SHA512_Last(SHA512_CTX* context) { |
867 | unsigned int usedspace; |
868 | |
869 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; |
870 | #ifndef WORDS_BIGENDIAN |
871 | /* Convert FROM host byte order */ |
872 | REVERSE64(context->bitcount[0],context->bitcount[0]){ sha2_word64 tmp = (context->bitcount[0]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8 ); (context->bitcount[0]) = ((tmp & 0xffff0000ffff0000ULL ) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16 ); }; |
873 | REVERSE64(context->bitcount[1],context->bitcount[1]){ sha2_word64 tmp = (context->bitcount[1]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8 ); (context->bitcount[1]) = ((tmp & 0xffff0000ffff0000ULL ) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16 ); }; |
874 | #endif |
875 | if (usedspace > 0) { |
876 | /* Begin padding with a 1 bit: */ |
877 | ((char *)context->buffer)[usedspace++] = 0x80; |
878 | |
879 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) { |
880 | /* Set-up for the last transform: */ |
881 | MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace)memset((&((char *)context->buffer)[usedspace]), 0, ((128 - 16) - usedspace)); |
882 | } else { |
883 | if (usedspace < SHA512_BLOCK_LENGTH128) { |
884 | MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_BLOCK_LENGTH - usedspace)memset((&((char *)context->buffer)[usedspace]), 0, (128 - usedspace)); |
885 | } |
886 | /* Do second-to-last transform: */ |
887 | SHA512_Transform(context, context->buffer); |
888 | |
889 | /* And set-up for the last transform: */ |
890 | MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH - 2)memset(((char *)context->buffer), 0, (128 - 2)); |
891 | } |
892 | } else { |
893 | /* Prepare for final transform: */ |
894 | MEMSET_BZERO((char *)context->buffer, SHA512_SHORT_BLOCK_LENGTH)memset(((char *)context->buffer), 0, ((128 - 16))); |
895 | |
896 | /* Begin padding with a 1 bit: */ |
897 | *((char *)context->buffer) = 0x80; |
898 | } |
899 | /* Store the length of input data (in bits): */ |
900 | MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount[1]), 8)memcpy((&((char *)context->buffer)[(128 - 16)]), ((char *)(&context->bitcount[1])), (8)); |
901 | MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH + 8], (char *)(&context->bitcount[0]), 8)memcpy((&((char *)context->buffer)[(128 - 16) + 8]), ( (char *)(&context->bitcount[0])), (8)); |
902 | |
903 | /* Final transform: */ |
904 | SHA512_Transform(context, context->buffer); |
905 | } |
906 | |
907 | void solv_SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { |
908 | sha2_word64 *d = (sha2_word64*)digest; |
909 | |
910 | /* Sanity check: */ |
911 | /* assert(context != (SHA512_CTX*)0); */ |
912 | |
913 | /* If no digest buffer is passed, we don't bother doing this: */ |
914 | if (digest != (sha2_byte*)0) { |
915 | SHA512_Last(context); |
916 | |
917 | /* Save the hash data for output: */ |
918 | #ifndef WORDS_BIGENDIAN |
919 | { |
920 | /* Convert TO host byte order */ |
921 | int j; |
922 | for (j = 0; j < 8; j++) { |
923 | REVERSE64(context->state[j],context->state[j]){ sha2_word64 tmp = (context->state[j]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8 ); (context->state[j]) = ((tmp & 0xffff0000ffff0000ULL ) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16 ); }; |
924 | *d++ = context->state[j]; |
925 | } |
926 | } |
927 | #else |
928 | MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH)memcpy((d), (context->state), (64)); |
929 | #endif |
930 | } |
931 | |
932 | /* Zero out state data */ |
933 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
934 | } |
935 | |
936 | |
937 | /*** SHA-384: *********************************************************/ |
938 | void solv_SHA384_Init(SHA384_CTX* context) { |
939 | if (context == (SHA384_CTX*)0) { |
940 | return; |
941 | } |
942 | MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH)memcpy((context->state), (sha384_initial_hash_value), (64) ); |
943 | MEMSET_BZERO((char *)context->buffer, SHA384_BLOCK_LENGTH)memset(((char *)context->buffer), 0, (128)); |
944 | context->bitcount[0] = context->bitcount[1] = 0; |
945 | } |
946 | |
947 | void solv_SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { |
948 | solv_SHA512_Update((SHA512_CTX*)context, data, len); |
949 | } |
950 | |
951 | void solv_SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { |
952 | sha2_word64 *d = (sha2_word64*)digest; |
953 | |
954 | /* Sanity check: */ |
955 | /* assert(context != (SHA384_CTX*)0); */ |
956 | |
957 | /* If no digest buffer is passed, we don't bother doing this: */ |
958 | if (digest != (sha2_byte*)0) { |
959 | SHA512_Last((SHA512_CTX*)context); |
960 | |
961 | /* Save the hash data for output: */ |
962 | #ifndef WORDS_BIGENDIAN |
963 | { |
964 | /* Convert TO host byte order */ |
965 | int j; |
966 | for (j = 0; j < 6; j++) { |
967 | REVERSE64(context->state[j],context->state[j]){ sha2_word64 tmp = (context->state[j]); tmp = (tmp >> 32) | (tmp << 32); tmp = ((tmp & 0xff00ff00ff00ff00ULL ) >> 8) | ((tmp & 0x00ff00ff00ff00ffULL) << 8 ); (context->state[j]) = ((tmp & 0xffff0000ffff0000ULL ) >> 16) | ((tmp & 0x0000ffff0000ffffULL) << 16 ); }; |
968 | *d++ = context->state[j]; |
969 | } |
970 | } |
971 | #else |
972 | MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH)memcpy((d), (context->state), (48)); |
973 | #endif |
974 | } |
975 | |
976 | /* Zero out state data */ |
977 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
978 | } |
979 | |
980 | |
981 | /*** SHA-224: *********************************************************/ |
982 | |
983 | void solv_SHA224_Init(SHA224_CTX* context) { |
984 | if (context == (SHA224_CTX*)0) { |
985 | return; |
986 | } |
987 | MEMCPY_BCOPY(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH)memcpy((context->state), (sha224_initial_hash_value), (32) ); |
988 | MEMSET_BZERO((char *)context->buffer, SHA224_BLOCK_LENGTH)memset(((char *)context->buffer), 0, (64)); |
989 | context->bitcount = 0; |
990 | } |
991 | |
992 | void solv_SHA224_Update(SHA224_CTX* context, const sha2_byte* data, size_t len) { |
993 | solv_SHA256_Update((SHA256_CTX*)context, data, len); |
994 | } |
995 | |
996 | void solv_SHA224_Final(sha2_byte digest[], SHA224_CTX* context) { |
997 | sha2_word32 *d = (sha2_word32*)digest; |
998 | |
999 | /* Sanity check: */ |
1000 | /* assert(context != (SHA224_CTX*)0); */ |
1001 | |
1002 | /* If no digest buffer is passed, we don't bother doing this: */ |
1003 | if (digest != (sha2_byte*)0) { |
1004 | SHA256_Last(context); |
1005 | |
1006 | #ifndef WORDS_BIGENDIAN |
1007 | { |
1008 | /* Convert TO host byte order */ |
1009 | int j; |
1010 | for (j = 0; j < 7; j++) { |
1011 | REVERSE32(context->state[j],context->state[j]){ sha2_word32 tmp = (context->state[j]); tmp = (tmp >> 16) | (tmp << 16); (context->state[j]) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); }; |
1012 | *d++ = context->state[j]; |
1013 | } |
1014 | } |
1015 | #else |
1016 | MEMCPY_BCOPY(d, context->state, SHA224_DIGEST_LENGTH)memcpy((d), (context->state), (28)); |
1017 | #endif |
1018 | } |
1019 | |
1020 | /* Clean up state data: */ |
1021 | MEMSET_BZERO(context, sizeof(*context))memset((context), 0, (sizeof(*context))); |
1022 | } |